Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The diselanylbis(1,3-dimethyl-1H-imidazol-3-ium) dication stabilized by the polymeric catena-pentachloridotricuprate(I) anion

Martin M. Kimani, Don VanDerveer and Julia L. Brumaghim*

Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA Correspondence e-mail: brumagh@clemson.edu

Received 7 April 2011
Accepted 12 May 2011
Online 19 May 2011
In the title compound, catena-poly[diselanylbis(1,3-dimethyl1 H -imidazol-3-ium) [μ_{3}-chlorido-tetra- μ_{2}-chlorido-tricup$\operatorname{rate}(\mathrm{I})]],\left\{\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Se}_{2}\right)\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]\right\}_{n}$, the diselenide dication is stabilized by catena- $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ anions which associate through strong $\mathrm{Cu}-\mathrm{Cl}$ bonds [average length $=2.3525(13) \AA$] to form polymeric chains. The polymeric $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ anion contains crystallographically imposed twofold rotation symmetry, with distorted trigonal-planar and tetrahedral geometries around the two symmetry-independent Cu atoms. Likewise, the $\mathrm{Se}-\mathrm{Se}$ bond of the cation is centered on a twofold rotation axis.

Comment

The interactions of selenium- and sulfur-containing compounds with copper have attracted recent interest, since these compounds are potent antioxidants in the prevention of metal-mediated DNA damage (Battin et al., 2006, 2011; Battin \& Brumaghim, 2008, 2009; Ramoutar \& Brumaghim, 2007; Kimani et al., 2010). Of particular interest is the coordination chemistry of 1,3-dimethylimidazole selone (dmise) and thione (dmit), which are structurally similar to the naturally occurring radical scavengers selenoneine (Yamashita \& Yamashita, 2010) and ergothioneine (Ey et al., 2007). Dmise and dmit have been shown to prevent effectively both metal-mediated DNA damage (Akanmu et al., 1991) and peroxynitrite-mediated tyrosine nitration (Bhabak \& Mugesh, 2010).

Previous reports indicate that Cu^{+}complexes can be prepared via reduction of Cu^{2+} salts using different selenoand thioamide ligands (Battaglia et al., 1979; Hussein et al., 1985; Devillanova et al., 1986; Piro et al., 2000). Additionally, selenium-containing ligands can also be oxidized to form dication salts upon Cu^{2+} reduction (Batchelor et al., 1990). It is also well known that halogens such as diiodine, iodobromide, iodochloride and dibromine (Bigoli, Demartin et al., 1996), and acids such as HCl and HF (Choi et al., 2009), can oxidize dmise to diselenide dications. Because of the importance of
$\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$redox cycling for selenium and sulfur antioxidant activity, we have investigated the ability of dmise and dmit to reduce Cu^{2+} to Cu^{+}. Thus, we carried out the reaction of anhydrous CuCl_{2} with one molar equivalent of dmise in a mixed-solvent system of ethanol and dichloromethane. In this reaction, reduction of Cu^{2+} to Cu^{+}occurs simultaneously with formation of the diselenide dication by dmise oxidation without forming a $\mathrm{Cu}^{+}-$dmise complex. Instead, the dmise ligand reacts with CuCl_{2} to yield a red-colored solid (66% yield) with a polymeric $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ dianion and a disela-nylbis(1,3-dimethyl-1H-imidazol-3-ium) dication, as revealed by X-ray structural analysis of the title compound, (I) (Fig. 1). The structure of (I) is of interest because there are only a limited number of documented metal-organic diselenide salts (Fujihara et al., 1993).

(I)

The diselenide dication of (I) sits across a twofold axis and has an $\mathrm{Se} 1-\mathrm{Se}^{1}{ }^{\mathrm{i}}$ [symmetry code: (i) $-x, y,-z+\frac{1}{2}$] bond length of 2.3946 (13) A. The torsion angle about this bond $\left(\mathrm{C} 1-\mathrm{Se} 1-\mathrm{Se} 1^{\mathrm{i}}-\mathrm{C} 1^{\mathrm{i}}\right)$ is $70.9(2)^{\circ}$, larger than in similar previously reported diselenide cations, such as $\left[\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}-\right.\right.$

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $-x+2, y,-z+\frac{3}{2}$; (iii) $-x+2,-y,-z+1$.]
$\left.\mathrm{Se})_{2}\right]^{2+}$ (28.6-32.0 ; Bigoli, Demartin et al., 1996). The $\mathrm{Se}-\mathrm{Se}$ bond length is comparable with those found in [$\left.\left\{\mathrm{SeC}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$ [2.380 (6) Å; Villa et al., 1970], but shorter than in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}_{2}\right)_{2}\right] \mathrm{Br}_{2} \quad[2.409(2) \AA], \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}\right)_{2}\right] \mathrm{I}_{2}$ $[2.434$ (2) $\AA],\left[\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}\right)_{2} \mathrm{Cl}\right] \mathrm{I}_{3}$ [2.440 (2) $\left.\AA\right],\left[\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Se}\right)_{2^{-}}\right.$ $\mathrm{Br}]\left(\mathrm{IBr}_{2}\right) \quad[2.424(1) \AA],\left[\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{Se}_{2}\right)_{2} \mathrm{I}_{3}\right]\left(\mathrm{I}_{4}\right)_{0.5} \quad[2.416(2) \AA]$ (Bigoli, Demartin et al., 1996) and [2(ebis) $\left.)_{2}\right]\left[2(\mathrm{TCNQ})_{3}\right]$ [2.451 (2) \AA; TCNQ is tetracyanoquinodimethane and ebis is bis(selenoimidazolyl)ethane; Bigoli, Deplano et al., 1996]. Formation of the diselenide cation results in relatively unchanged $\mathrm{Se}-\mathrm{C}$ bond lengths $[1.884$ (5) \AA] compared with the unoxidized dmise ligand ($1.89 \AA$; Williams et al., 1993).

The diselenide dication is stabilized by a polymeric chloridocuprate $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ dianion (Fig. 1). The $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ dianion contains two geometrically different Cu^{+}centers connected by bridging chloride ligands, with rhomboid $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ segments linked by CuCl_{3} units. Atoms Cu 1 and Cl 2 lie on a twofold rotational symmetry axis, with the $\mathrm{Cu} 1-\mathrm{Cl} 2$ bond along this axis. Atom Cu 1 adopts a distorted trigonal-planar geometry, with an average $\mathrm{Cu}-\mathrm{Cl}$ bond length of 2.3167 (11) \AA, and $\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl}_{1} \mathrm{ii}, \mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$ and $\mathrm{Cl} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{Cl} 2$ bond angles of 146.13 (10), 106.94 (5), and $106.94(5)^{\circ}$, respectively [symmetry code: (ii) $-x+2, y,-z+\frac{3}{2}$]. The second copper center, Cu 2 , adopts a distorted tetrahedral geometry, with an average $\mathrm{Cu}-\mathrm{Cl}$ bond length of 2.3883 (15) \AA, and $\mathrm{Cl} 1^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{Cl} 2, \mathrm{Cl} 3-\mathrm{Cu} 2-\mathrm{Cl} 1^{\mathrm{ii}}, \mathrm{Cl} 2-$ $\mathrm{Cu} 2-\mathrm{Cl}^{\mathrm{iii}}$ and $\mathrm{Cl}^{\mathrm{iii}}-\mathrm{Cu} 2-\mathrm{Cl} 3$ bond angles of 102.47 (6), 117.47 (6), 109.15 (6) and $101.00(5)^{\circ}$, respectively [symmetry code: (iii) $-x+2,-y,-z+1]$. The $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angles in the chloridocuprate network of complex (I) range from 71.94 (5) to $143.88(10)^{\circ}$. These angles are similar to those reported for $\left(\mathrm{H}_{2} \mathrm{Pip}\right)\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]$ (77.53-149.03${ }^{\circ}$; Pip is piperazinium; Kuperstock et al., 2009), but dramatically different from those found in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{NH}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]$ (86.6-138.4 ; Goreshnik \& Myskiv, 2006) and ($\left.\mathrm{H}_{2} \mathrm{MePip}\right)\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]$ (85.94-137.84 ${ }^{\circ}$; Kuperstock et al., 2009). The distance between the two geometrically different Cu^{+}centers is 2.9201 (12) \AA, longer than sum of the van der Waals radii for two Cu atoms ($2.80 \AA$; Bondi, 1964) and indicating no interaction between these ions. The average $\mathrm{Cu}-\mathrm{Cl}$ bond length of $2.3525(13) \AA$ in the $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ dianion is shorter than those reported in piperazinium chloridocuprates such as $\left(\mathrm{H}_{2} \mathrm{Pip}\right)\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]$ [2.3805 (10) \AA; Kuperstock et al., 2009], but longer than those in $\left(\mathrm{H}_{2} \mathrm{MePip}\right)$ $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]$ [2.3194 (10) \AA], $\left(\mathrm{H}_{2} \mathrm{Me}_{2} \mathrm{Pip}\right)\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6}\right]$ [2.2936 (5) \AA; Kuperstock et al., 2009], [($\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{NH}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right.$] [2.306 (12) \AA; Goreshnik \& Myskiv, 2006] and $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]$ [2.3194 (10) \AA; Redel et al., 2009].

The diselenide dications in the crystal packing of (I) are arranged parallel to each other along the b axis ([001] direction), with the $\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]^{2-}$ dianions positioned between the cations (Fig. 2). Such an arrangement leads to the involvement of the Cl atoms in short-contact interactions with Se and H atoms, thereby forming a two-dimensional network. The packing diagram of (I) reveals weak interactions of 3.3826 (16) \AA for $\mathrm{Se} 1-\mathrm{Cl} 1$ and 3.0811 (16) \AA for $\mathrm{Se} 1-\mathrm{Cl} 3$, shorter than the sum of their van der Waals radii ($3.80 \AA$; Bondi, 1964).

Figure 2
The crystal packing of (I), viewed along the b axis, showing the shortcontact $\mathrm{Se} \cdots \mathrm{Cl}$ and $\mathrm{H} \cdots \mathrm{Cl}$ interactions (dashed lines).

Experimental

1,3-Dimethylimidazole selone (dmise) was synthesized according to the procedure of Roy et al. (2007) and CuCl_{2} (Alfa Aesar) was used as received. For the synthesis of (I), $\mathrm{CuCl}_{2}(135 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in ethanol (15 ml) and to this was added a solution of dmise $(175 \mathrm{mg}, 1 \mathrm{mmol})$ in dichloromethane (10 ml) via a cannula. Upon addition, the color of the solution changed from light brown to dark brown. The dark-brown reaction mixture was stirred for 6 h , resulting in the formation of a red-brown precipitate. This solid was filtered, dried in vacuo and analyzed. Crystals suitable for X-ray diffraction were grown by slow vapor diffusion of ether into an acetonitrile solution [yield 34%, based on dmise ($244 \mathrm{mg}, 0.341 \mathrm{mmol}$); m.p. $445 \mathrm{~K}] .{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $3.89\left(s, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right), 7.61(s, 4 \mathrm{H}, 4 \times$ CH); ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $37.02\left(\mathrm{CH}_{3}\right), 125.27(\mathrm{CH}), \mathrm{C}-\mathrm{Se}($ not observed); IR (Nujol, $v, \mathrm{~cm}^{-1}$): 467 (w), 504 (w), 660 (v), 739 (v), 761 (s), 1079 (w), 1155 (s), 1223 (v), 1243 (s), 1377 (v), 1463 (v), $1494(s), 1562$ (s), 2855 (s), 2928 (b). ESI-MS $\left(\mathrm{CNCH}_{3}\right.$, positive ionization): $m / z 175.9\left[\left(\mathrm{C}_{5} \mathrm{~N}_{2} \mathrm{H}_{8} \mathrm{Se}\right)_{2}\right]^{2+}$. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Cl}_{5} \mathrm{Cu}_{3} \mathrm{~N}_{4} \mathrm{Se}_{2}: \mathrm{C} 16.73$, N 7.80 , H 2.25%; found: C 16.71, N 7.97, H 2.35%.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Se}_{2}\right)\left[\mathrm{Cu}_{3} \mathrm{Cl}_{5}\right]$
$M_{r}=718.06$
Monoclinic, $C 2 / c$
$a=12.238$ (2) A
$b=12.217$ (2) \AA
$c=14.123$ (3) \AA
$\beta=108.61$ (3) ${ }^{\circ}$
$V=2001.2(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.47 \mathrm{~mm}^{-1}$
$T=168 \mathrm{~K}$
$0.32 \times 0.25 \times 0.23 \mathrm{~mm}$

Data collection

Rigaku AFC-8S diffractometer Absorption correction: multi-scan [REQAB (Jacobson, 1998) and CrystalClear (Rigaku/MSC, 2006)]

$$
T_{\min }=0.199, T_{\max }=0.279
$$

8327 measured reflections 2022 independent reflections 1698 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.114$
$S=1.11$
2022 reflections

112 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.12 \mathrm{e}^{-3}$

In the final cycle of least-squares refinement, the H atoms were fixed in idealized positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (aromatic C) or $1.5 U_{\text {eq }}($ methyl C). The largest peak in the final difference Fourier map was located $0.11 \AA$ from atom Cl1 and the lowest peak was located $0.73 \AA$ from atom Cu 2 .

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Version 6.10; Sheldrick, 2008); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the National Science Foundation CAREER Award (grant No. CHE0545138) for financial support. MMK thanks the Chemistry Department of Clemson University for a graduate fellowship. We also thank Carolyn Quarles for performing the ESI-MS experiments.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FN3080). Services for accessing these data are described at the back of the journal.

References

Akanmu, D., Cecchini, R., Aruoma, O. I. \& Halliwell, B. (1991). Arch. Biochem. Biophys. 288, 10-16.
Batchelor, R. J., Einstein, F. W. B., Gay, I. D., Gu, J. H., Pinto, M. \& Zhou, X. M. (1990). J. Am. Chem. Soc. 112, 3706-3707.

Battaglia, L. P., Corradi, A. B., Devillanova, F. A. \& Verani, G. (1979). Transition Met. Chem. 4, 264-266.
Battin, E. E. \& Brumaghim, J. L. (2008). J. Inorg. Biochem. 102, 2036-2042.
Battin, E. E. \& Brumaghim, J. L. (2009). Cell Biochem. Biophys. 55, 1-23.
Battin, E. E., Perron, N. R. \& Brumaghim, J. L. (2006). Inorg. Chem. 45, 499501.

Battin, E. E., Zimmerman, M. T., Ramoutar, R. R., Quarles, C. E. \& Brumaghim, J. L. (2011). Metallomics, 3, 503-512.
Bhabak, K. P. \& Mugesh, G. (2010). Chem. Eur. J. 16, 1175-1185.
Bigoli, F., Demartin, F., Deplano, P., Devillanova, F. A., Isaia, F., Lippolis, V., Mercuri, M. L., Pellinghelli, M. A. \& Trogu, E. F. (1996). Inorg. Chem. 35, 3194-3201.
Bigoli, F., Deplano, P., Devillanova, F. A., Girlando, A., Lippolis, V., Mercuri, M. L., Pellinghelli, M. A. \& Trogu, E. F. (1996). Inorg. Chem. 35, 54035406.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Choi, J., Ko, J. H., Jung, G., Yang, H. Y., Ko, K. C., Lee, J. Y., Lee, S. M., Kim, H. J., Nam, J. H., Ahn, J. R. \& Son, S. U. (2009). Chem. Mater. 21, 25712573.

Devillanova, F. A., Diaz, A., Isaia, F., Verani, G., Battaglia, L. P. \& Corradi, A. B. (1986). J. Coord. Chem. 15, 161-172.

Ey, J., Schomig, E. \& Taubert, D. (2007). J. Agric. Food Chem. 55, 6466-6474. Fujihara, H., Akaishi, R. \& Furukawa, N. (1993). Tetrahedron, 49, 1605-1618. Goreshnik, E. A. \& Myskiv, M. G. (2006). Russ. J. Coord. Chem. 32, 25-32.
Hussein, A., Devillanova, F. A., Isaia, F. \& Verani, G. (1985). Transition Met. Chem. 10, 368-370.
Jacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.
Kimani, M. M., VanDerveer, D. \& Brumaghim, J. L. (2010). Inorg. Chem. 49, 9200-9211.
Kuperstock, J. B., Ley, A. N. \& Pike, R. D. (2009). J. Chem. Crystallogr. 39, 131-137.
Piro, O. E., Piatti, R. C. V., Bolzán, A. E., Salvarezza, R. C. \& Arvia, A. J. (2000). Acta Cryst. B56, 993-997.

Ramoutar, R. R. \& Brumaghim, J. L. (2007). J. Inorg. Biochem. 101, 10281035.

Redel, E., Fiederle, M. \& Janiak, C. (2009). Z. Anorg. Allg. Chem. 635, 11391147.

Rigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Roy, G., Das, D. \& Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303-316.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Villa, A. C., Nardelli, M. \& Tani, M. E. V. (1970). Acta Cryst. B26, 15041510.

Williams, D. J., Fawcett, M. R. B., Raye, R. R., VanDerveer, D., Pang, Y. T., Jones, R. L. \& Bergbauer, L. K. (1993). Heteroatom Chem. 4, 409-414.
Yamashita, Y. \& Yamashita, M. J. (2010). Biol. Chem. 285, 18134-18138.

